Towards a unified theory of vowels

Markus A. Pöchtrager
markus.poechtrager@univie.ac.at
University of Vienna

> BRaCeLeT talk series, \#10
> Budapest, September 10, 2019

(1) Introduction

(2) Vowel Reduction
(3) English tense/lax
(4) Québec French
(5) The meaning of the heads
(6) Conclusion

What's this all about?

(1) Representation of vowel height non-trivial (Pulleyblank 2011).

What's this all about?

(1) Representation of vowel height non-trivial (Pulleyblank 2011).
a. 2 vowels
i
a
b. 5 vowels
$\begin{array}{ll}\text { i } & \text { u } \\ \text { e } & \text { o }\end{array}$
a
c. 7 vowels

i	u
e	o
ε	o

d. 10 vowels i
u

e	o
ε	J

 e
 a

What's this all about?

(1) Representation of vowel height non-trivial (Pulleyblank 2011).
a. 2 vowels
i
a
b. 5 vowels

i	u
e	o

a
c. 7 vowels

i		u
e		o
ε		o

a
d. 10 vowels

u

i		u
I		U
e		o
ε		o
	e	
	a	

- How many degrees of height?

What's this all about?

(1) Representation of vowel height non-trivial (Pulleyblank 2011).
a. 2 vowels
i
a
b. 5 vowels

i	u
e	o

a
c. 7 vowels

i	u
e	o
ε	o

d. 10 vowels

i	u
I	U

0
e
a

- How many degrees of height?
- Height proper intersecting with tense/lax? If so, where?

What's this all about?

(1) Representation of vowel height non-trivial (Pulleyblank 2011).
a. 2 vowels i a
b. 5 vowels

i	u
e	o

a
c. 7 vowels

i		u
e		o
ε		o

a
d. 10 vowels
i
u

i		u
I		U
e		o
ε		J
	e	
	a	

- How many degrees of height?
- Height proper intersecting with tense/lax? If so, where?
(2) Symbols won't tell: Dress in Wells (1982) [e] for RP, but [ε] for GenAm, yet identical behaviour; articulatory difference miniscule.

What's this all about?

(1) Representation of vowel height non-trivial (Pulleyblank 2011).
a. 2 vowels
i
b. 5 vowels

i	u
e	o

a
c. 7 vowels

i	u
e	o
ε	o

a
d. 10 vowels
u
0
0
0
e
a

- How many degrees of height?
- Height proper intersecting with tense/lax? If so, where?
(2) Symbols won't tell: DRESS in Wells (1982) [e] for RP, but [ε] for GenAm, yet identical behaviour; articulatory difference miniscule.
(3) Articulation won't tell: "vowels classified as high do not have the same tongue height. [[u]] is nowhere near as high as [[i]]" (Ladefoged \& Johnson 2010: 21) - also applies to F_{1}.

This talk

(1) Proposal how to represent vowel height.

This talk

(1) Proposal how to represent vowel height.
(2) Structural approach, following GP 2.0 (Pöchtrager 2006).

This talk

(1) Proposal how to represent vowel height.
(2) Structural approach, following GP 2.0 (Pöchtrager 2006).
(3) Besides representation of vowel height, we also get accounts of:

This talk

(1) Proposal how to represent vowel height.
(2) Structural approach, following GP 2.0 (Pöchtrager 2006).
(3) Besides representation of vowel height, we also get accounts of:

- vowel reduction

This talk

(1) Proposal how to represent vowel height.
(2) Structural approach, following GP 2.0 (Pöchtrager 2006).
(3) Besides representation of vowel height, we also get accounts of:

- vowel reduction
- lenition in consonants

This talk

(1) Proposal how to represent vowel height.
(2) Structural approach, following GP 2.0 (Pöchtrager 2006).
(3) Besides representation of vowel height, we also get accounts of:

- vowel reduction
- lenition in consonants
- tense/lax distinction

This talk

(1) Proposal how to represent vowel height.
(2) Structural approach, following GP 2.0 (Pöchtrager 2006).
(3) Besides representation of vowel height, we also get accounts of:

- vowel reduction
- lenition in consonants
- tense/lax distinction
- transparent vowels in vowel harmony (not discussed here)
(1) Introduction
(2) Vowel Reduction
(3) English tense/lax
(4) Québec French
(5) The meaning of the heads
(6) Conclusion

Reduction as element loss: Correct predictions. . .

(1) Brazilian Portuguese (BP) (Cristófaro Alves da Silva 1992; Mateus \& d'Andrade 2000; Wetzels 1995):

3	stressed	i	e	ε	a	∂	o	u
2	prestressed	i	e	a	o	u		
1	unstressed final	i			∂	u		

Reduction as element loss: Correct predictions.

(1) Brazilian Portuguese (BP) (Cristófaro Alves da Silva 1992; Mateus \& d'Andrade 2000; Wetzels 1995):

3	stressed	i	e	ε	a	∂	0	u
2	prestressed	i	e	a	0	u		
1	unstressed final	i		∂	u			

(2) $[\mathrm{e}] /[\mathrm{i}]$ merge as $[\mathrm{i}](2 \rightarrow 1)$: Loss of \mathbf{A} in unstressed position (Harris 1997; Harris \& Lindsey 1995, 2000).

Reduction as element loss: Correct predictions.

(1) Brazilian Portuguese (BP) (Cristófaro Alves da Silva 1992; Mateus \& d'Andrade 2000; Wetzels 1995):

3	stressed	i	e	ε	a	∂	0	u
2	prestressed	i	e	a	0	u		
1	unstressed final	i		∂	u			

(2) $[\mathrm{e}] /[\mathrm{i}]$ merge as $[\mathrm{i}](2 \rightarrow 1)$: Loss of \mathbf{A} in unstressed position (Harris 1997; Harris \& Lindsey 1995, 2000).

(3) Key argument to support privative features (Kaye, Lowenstamm \& Vergnaud 1985, 1990; Harris 1990, 1994).
(1) Note how $[\mathrm{a}]\left(\} \underline{\mathbf{A}}) \rightarrow[ə]\left(\{\mathbf{A}\} _\right)\right.$remains unexpressed.
(1) Note how $[\mathrm{a}]\left(\} \underline{\mathbf{A}}) \rightarrow[ə]\left(\{\mathbf{A}\} _\right)\right.$remains unexpressed.
(2) Similarly, merger of $[\varepsilon],[e] \rightarrow[e]$?

up to a point

(1) Note how $[\mathrm{a}]\left(\} \underline{\mathbf{A}}) \rightarrow[\boldsymbol{\rho}]\left(\{\mathbf{A}\} _\right)\right.$remains unexpressed.
(2) Similarly, merger of $[\varepsilon],[\mathrm{e}] \rightarrow[\mathrm{e}]$?
(3) Two interpretations conceivable for $[\varepsilon]$:

- ($\{1\} \mathbf{A})$
- $\left(\{\mathbf{I}, \mathbf{A}\}_{-}\right)$
(1) Note how $[a]\left(\} \underline{A}) \rightarrow[ə]\left(\{\mathbf{A}\}_{-}\right)\right.$remains unexpressed.
(2) Similarly, merger of $[\varepsilon],[\mathrm{e}] \rightarrow[\mathrm{e}]$?
(3) Two interpretations conceivable for $[\varepsilon]$:

$$
\begin{aligned}
& \cdot(\{\mathbf{I}\} \underline{\mathbf{A}}) \\
& \cdot\left(\{\mathbf{I}, \mathbf{A}\}_{-}\right)
\end{aligned}
$$

(4) Going from either one to $[e]$, i.e. $(\{\mathbf{A}\} \underline{\mathbf{I}})$, requires a rearrangement:

up to a point

(1) Note how $[\mathrm{a}]\left(\} \underline{\mathbf{A}}) \rightarrow[ə]\left(\{\mathbf{A}\} _\right)\right.$remains unexpressed.
(2) Similarly, merger of $[\varepsilon],[e] \rightarrow[e]$?
(3) Two interpretations conceivable for $[\varepsilon]$:

- ($\{\mathbf{I}\} \underline{\mathbf{A}})$
- ($\left.\{\mathbf{I}, \mathbf{A}\}_{-}\right)$
(4) Going from either one to $[\mathrm{e}]$, i.e. $(\{\mathbf{A}\} \underline{\mathbf{I}})$, requires a rearrangement:

(5) Neither option involves the loss of an element.

up to a point

(11) Note how $[\mathrm{a}]\left(\} \underline{\mathbf{A}}) \rightarrow[ə]\left(\{\mathbf{A}\} _\right)\right.$remains unexpressed.
(2) Similarly, merger of $[\varepsilon],[e] \rightarrow[e]$?
(3) Two interpretations conceivable for [$[\varepsilon$:

- ($\{\mathbf{I}\} \underline{\mathbf{A}})$
- $\left(\{\mathbf{I}, \mathbf{A}\}_{-}\right)$
(4) Going from either one to $[\mathrm{e}]$, i.e. $(\{\mathbf{A}\} \underline{\mathbf{I}})$, requires a rearrangement:

(6) Neither option involves the loss of an element.
(6) From point of view of formalism not unified.

Cross-linguistic variation

(11) Eastern Catalan (EC) (Harris 2005; Wheeler 2005) vs. BP.

Cross-linguistic variation

(1) Eastern Catalan (EC) (Harris 2005; Wheeler 2005) vs. BP.
(2) Seemingly identical 7 -vowel systems.

Cross-linguistic variation

(1) Eastern Catalan (EC) (Harris 2005; Wheeler 2005) vs. BP.
(2) Seemingly identical 7 -vowel systems.
(3) However, vowels reduce differently in unstressed position.

Cross-linguistic variation

(1) Eastern Catalan (EC) (Harris 2005; Wheeler 2005) vs. BP.
(2) Seemingly identical 7 -vowel systems.
(3) However, vowels reduce differently in unstressed position.
(4) Brazilian Portuguese (BP):

3	stressed	i	e	ε	a	∂	o	u
2	prestressed	i	e	a	0	u		
1	unstressed final	i		∂	u			

Cross-linguistic variation

(11) Eastern Catalan (EC) (Harris 2005; Wheeler 2005) vs. BP.
(2) Seemingly identical 7 -vowel systems.
(3) However, vowels reduce differently in unstressed position.
(4) Brazilian Portuguese (BP):

3	stressed	i	e	ε	a	ν	0	u
2	prestressed	i	e	a	0	u		
1	unstressed final	i			∂	u		

(5) Eastern Catalan (EC):

strong	i	e	ε	a	∂	o	u
weak	i	∂			u		

Problems everywhere

(1) Questions so far:

Problems everywhere

(1) Questions so far:
a. Formal unity of reduction? (Loss and rearrangement of elements both "count" as the same.)

Problems everywhere

(1) Questions so far:
a. Formal unity of reduction? (Loss and rearrangement of elements both "count" as the same.)
b. Why does reduction take a specific shape? (If rearrangements allowed, why not merge $[\varepsilon]$ and $[e]$ as $[\varepsilon]$ in BP? Identical question for Italian, Slovenian.)

Problems everywhere

(1) Questions so far:
a. Formal unity of reduction? (Loss and rearrangement of elements both "count" as the same.)
b. Why does reduction take a specific shape? (If rearrangements allowed, why not merge $[\varepsilon]$ and $[e]$ as $[\varepsilon]$ in BP? Identical question for Italian, Slovenian.)
c. Asymmetries in reduction patterns between languages? (BP vs. EC)

Problems everywhere

(1) Questions so far:
a. Formal unity of reduction? (Loss and rearrangement of elements both "count" as the same.)
b. Why does reduction take a specific shape? (If rearrangements allowed, why not merge $[\varepsilon]$ and $[e]$ as $[\varepsilon]$ in BP? Identical question for Italian, Slovenian.)
c. Asymmetries in reduction patterns between languages? (BP vs. EC)
(2) Ambitious goal: Address those problems by linking everything to structure and the arrangement of elements within that structure.

What unites reduction formally?

(1) Why does $[\mathrm{e}] \rightarrow[\mathrm{i}]$ (loss of an element) count as much as $[\varepsilon] \rightarrow[\mathrm{e}]$ (rearrangement)?

What unites reduction formally?

(1) Why does $[\mathrm{e}] \rightarrow[\mathrm{i}]$ (loss of an element) count as much as $[\varepsilon] \rightarrow[\mathrm{e}]$ (rearrangement)?
(2) Backley (2011: 54): "[R]eduction causes long to become short, compound to become simplex, and headed to become non-headed."

What unites reduction formally?

(1) Why does $[\mathrm{e}] \rightarrow[\mathrm{i}]$ (loss of an element) count as much as $[\varepsilon] \rightarrow[\mathrm{e}]$ (rearrangement)?
(2) Backley (2011: 54): "[R]eduction causes long to become short, compound to become simplex, and headed to become non-headed."
(3) Add: change of heads.

What unites reduction formally?

(1) Why does $[\mathrm{e}] \rightarrow[\mathrm{i}]$ (loss of an element) count as much as $[\varepsilon] \rightarrow[\mathrm{e}]$ (rearrangement)?
(2) Backley (2011: 54): "[R]eduction causes long to become short, compound to become simplex, and headed to become non-headed."
(3) Add: change of heads.
(4) Possibly intuitive appeal but formally unclear.

What unites reduction formally?

(1) Why does $[\mathrm{e}] \rightarrow[\mathrm{i}]$ (loss of an element) count as much as $[\varepsilon] \rightarrow[\mathrm{e}]$ (rearrangement)?
(2) Backley (2011: 54): "[R]eduction causes long to become short, compound to become simplex, and headed to become non-headed."
(3) Add: change of heads.
(4) Possibly intuitive appeal but formally unclear.
(5) How to tackle the problem?

- Length
- Weird behaviour of A

Length

(1) Estonian (Lehiste 1965; Pöchtrager 2006; Raun \& Saareste 1965)

- Three degrees of length in stressed position (short, long, overlong).
- Only one (short) in unstressed position.

Length

(1) Estonian (Lehiste 1965; Pöchtrager 2006; Raun \& Saareste 1965)

- Three degrees of length in stressed position (short, long, overlong).
- Only one (short) in unstressed position.
(2) Could length reduction serve as a model?

Length

(1) Estonian (Lehiste 1965; Pöchtrager 2006; Raun \& Saareste 1965)

- Three degrees of length in stressed position (short, long, overlong).
- Only one (short) in unstressed position.
(2) Could length reduction serve as a model?
(3) That is, in unstressed position there is less room?

Length

(11) Estonian (Lehiste 1965; Pöchtrager 2006; Raun \& Saareste 1965)

- Three degrees of length in stressed position (short, long, overlong).
- Only one (short) in unstressed position.
(2) Could length reduction serve as a model?
(3) That is, in unstressed position there is less room?

Weird, weirder, A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)

Weird, weirder, A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) A behaves differently from other elements.

Weird, weirder, A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) A behaves differently from other elements.
(3) Also noted in Dependency Phonology \& Particle Phonology (Anderson \& Ewen 1987; Cobb 1995, 1997; Kaye 2000; Pöchtrager 2006, 2012; Schane 1984).

Weird, weirder, A

(1) A ~ [non-high] as well as [coronal] (Broadbent 1991; Cyran 1997)
(2) A behaves differently from other elements.
(3) Also noted in Dependency Phonology \& Particle Phonology (Anderson \& Ewen 1987; Cobb 1995, 1997; Kaye 2000; Pöchtrager 2006, 2012; Schane 1984).
(4) "Differently": A seems to interact with (constituent) structure unlike other elements.

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\quad \breve{V}+\mathrm{CC}($ mint, lift, pact).

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains A (= coronal): fiend but not * fiemp nor *fienk, count but not *coump nor * counk.

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains A (= coronal): fiend but not *fiemp nor *fienk, count but not *coump nor *counk.
- Also with s+C: east, boost, haste, boast - *easp, *boosk, *haspe, *boask.

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains \mathbf{A} (= coronal): fiend but not * fiemp nor *fienk, count but not *coump nor * counk.
- Also with s+C: east, boost, haste, boast - *easp, *boosk, *haspe, *boask.
- S. Br. English: clasp, task, draft - *cleesp, *toosk, *dreeft. Nuclei containing A by itself can appear before $s+C$ even when one of the final consonants does not contain \mathbf{A}.

A interacting with structure

(1) Motivated by many cases where \mathbf{A} seems to provide extra room:
(2) English size restrictions:

- Either: $\overline{\mathrm{V}} / \mathrm{VV}+\mathrm{C}$ (meet, boot, boat).
- Or: $\quad \breve{V}+\mathrm{CC}($ mint, lift, pact).
(3) But:
- English: V̄CC if both C's contains \mathbf{A} (= coronal): fiend but not * fiemp nor *fienk, count but not *coump nor * counk.
- Also with s+C: east, boost, haste, boast - *easp, *boosk, *haspe, *boask.
- S. Br. English: clasp, task, draft - *cleesp, *toosk, *dreeft. Nuclei containing A by itself can appear before $s+C$ even when one of the final consonants does not contain A.
- Vowel makes up for "insufficiency" of cluster; but there have to be two A's around.

A as structure

(1) Not only English; recurrent across languages (Pöchtrager 2012).

A as structure

(1) Not only English; recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.

A as structure

(1) Not only English; recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).

A as structure

(1) Not only English; recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).
(4) Proposal: Expressions that were thought to contain \mathbf{A} are structurally bigger than those without (Pöchtrager 2006, 2010, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).

A as structure

(1) Not only English; recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).
(4) Proposal: Expressions that were thought to contain \mathbf{A} are structurally bigger than those without (Pöchtrager 2006, 2010, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).
(5) In fact, what should replace \mathbf{A}-ness is empty structure.

A as structure

(1) Not only English; recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).
(4) Proposal: Expressions that were thought to contain \mathbf{A} are structurally bigger than those without (Pöchtrager 2006, 2010, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).
(3) In fact, what should replace \mathbf{A}-ness is empty structure.
© Empty structure could be borrowed by adjacent objects and give rise to sequences that are bigger than normally allowed.

A as structure

(1) Not only English; recurrent across languages (Pöchtrager 2012).
(2) Finnish aalto 'wave', *aalpo, *aalko.
(3) "If it interacts with structure, make it structure" (cf. fate of [long]).
(4) Proposal: Expressions that were thought to contain \mathbf{A} are structurally bigger than those without (Pöchtrager 2006, 2010, 2012, 2018; Kaye \& Pöchtrager 2009, 2013).
(3) In fact, what should replace \mathbf{A}-ness is empty structure.
© Empty structure could be borrowed by adjacent objects and give rise to sequences that are bigger than normally allowed.
(3) Also allows to make sense of vowel reduction.

In our piggy bank so far

(1) Unstressed positions have less room.

In our piggy bank so far

(1) Unstressed positions have less room.
(2) A-ness replaced by empty structure.

Two x-bar structures on top of each other

(1) Vowel contains head (xN) that can project up to two times in accordance with x-bar theory.

Two x-bar structures on top of each other

(1) Vowel contains head (xN) that can project up to two times in accordance with x -bar theory.

(2) Can be embedded by another head (xn), which in turn can project up to twice. Maximal structure:

Doubled vowel structure also in den Dikken \& van der Hulst (2018).

Meaning of xn, xN : later

Vowel height \& annotation

(1) Amount of empty positions encodes openness ("A-ness").

Vowel height \& annotation

(1) Amount of empty positions encodes openness ("A-ness").

(2) Example: Schwa characterised by two empty positions only; not necessarily sisters, not necessarily within projection of $\times \mathrm{N}$.

Vowel height \& annotation

(1) Amount of empty positions encodes openness ("A-ness").

(2) Example: Schwa characterised by two empty positions only; not necessarily sisters, not necessarily within projection of $\times \mathrm{N}$.
(3) Heads can be annotated with elements:

Open-mid/open-closed/closed becomes scalar

(1) BP :

Open-mid/open-closed/closed becomes scalar

(1) BP :

(2) Vowel reduction uniformy expressible as removal of structure.

Open-mid/open-closed/closed becomes scalar

(1) BP :

(2) Vowel reduction uniformy expressible as removal of structure.
(3) Unstressed positions impose restrictions on space (cf. Estonian), thus length can be affected as well as quality.

Open-mid/open-closed/closed becomes scalar

(1) BP :

(2) Vowel reduction uniformy expressible as removal of structure.
(3) Unstressed positions impose restrictions on space (cf. Estonian), thus length can be affected as well as quality.

Reduction of [a] parallels [e]

(1)

(2) Welcome result as they happen in same context.

Detour on complexity

(1) Mid-1990's: Strong interest in properties of vowel systems in GP (Charette \& Göksel 1994, 1996; Kaye 2001).

Detour on complexity

(1) Mid-1990's: Strong interest in properties of vowel systems in GP (Charette \& Göksel 1994, 1996; Kaye 2001).
(2) Many cases: open mid-vowel \rightarrow closed mid-vowel But:
\nleftarrow

Detour on complexity

(1) Mid-1990's: Strong interest in properties of vowel systems in GP (Charette \& Göksel 1994, 1996; Kaye 2001).
(2) Many cases: open mid-vowel \rightarrow closed mid-vowel But:
3 Finnish, French (__\#), Turkish, Estonian, Northern German varieties: open and closed e-type vowel, but only one (closed) o.

Detour on complexity

(1) Mid-1990's: Strong interest in properties of vowel systems in GP (Charette \& Göksel 1994, 1996; Kaye 2001).
(2) Many cases: open mid-vowel \rightarrow closed mid-vowel But:
3 Finnish, French (__\#), Turkish, Estonian, Northern German varieties: open and closed e-type vowel, but only one (closed) o.
(4) Smaller structures (closed mid-vowels) more basic than bigger ones (open mid-vowels)?

Detour on complexity

(1) Mid-1990's: Strong interest in properties of vowel systems in GP (Charette \& Göksel 1994, 1996; Kaye 2001).
(2) Many cases: open mid-vowel \rightarrow closed mid-vowel But:
3 Finnish, French (__\#), Turkish, Estonian, Northern German varieties: open and closed e-type vowel, but only one (closed) o.
(4) Smaller structures (closed mid-vowels) more basic than bigger ones (open mid-vowels)?
(5) Potential problem cases: Polish (Jassem 2003).

Asymmetries EC/BP

(1) Brazilian Portuguese (BP):

3	stressed	i	e	ε	a	∂	o	u
2	prestressed	i	e	a	o	u		
1	unstressed final	i		∂	u			

Asymmetries EC/BP

(1) Brazilian Portuguese (BP):

3	stressed	i	e	ε	a	ν	0	u
2	prestressed	i		e	a	0	u	
1	unstressed final	i		∂	u			

(2) Eastern Catalan (EC):

strong	i	e	ε	a	∂	o	u
weak	i	∂			u		

(3) Proposal: I sits high up in EC, but in lower position in BP.

Asymmetries EC/BP

(1) Brazilian Portuguese (BP):

3	stressed	i	e	ε	a	ν	0	u
2	prestressed	i		e	a	0	u	
1	unstressed final	i		∂	u			

(2) Eastern Catalan (EC):

strong	i	e	ε	a	∂	o	u
weak	i	∂			u		

(3) Proposal: I sits high up in EC, but in lower position in BP.
(4) If tree pruning starts from the top, then in EC I will be lost immediately, as the branch it sits on is cut off first.

Asymmetries EC/BP

(1) Brazilian Portuguese (BP):

3	stressed	i	e	ε	a	∂	o	u
2	prestressed	i	e		a	0	u	
1	unstressed final	i		∂	u			

(2) Eastern Catalan (EC):

strong	i	e	ε	a	∂	o	u
weak	i	∂			u		

(3) Proposal: I sits high up in EC, but in lower position in BP.
(4) If tree pruning starts from the top, then in EC I will be lost immediately, as the branch it sits on is cut off first.
(5) $\ln \mathrm{BP}, \mathbf{I}$ is safe in its low position.

Asymmetries EC/BP

(1) Brazilian Portuguese (BP):

3	stressed	i	e	ε	a	∂	o	u
2	prestressed	i	e		a	o		u
1	unstressed final	i		∂	u			

(2) Eastern Catalan (EC):

strong	i	e	ε	a	∂	o	u
weak	i	∂			u		

(3) Proposal: I sits high up in EC, but in lower position in BP.
(4) If tree pruning starts from the top, then in EC I will be lost immediately, as the branch it sits on is cut off first.
(5) In BP, \mathbf{I} is safe in its low position.
(6) Asymmetry in reduction patterns derived.

Asymmetries EC/BP: trees

(1) BP
[i]

Asymmetries EC/BP: trees

(1) BP

(2) I high: explains why it is lost so fast and why the result is [ə].

Asymmetries EC/BP: trees

(1) BP

EC

[ョ]

[$]$
(2) I high: explains why it is lost so fast and why the result is [ə].
(3) \mathbf{U} low in both languages, thus the two languages reduce the same.

Does this buy something else?

(1) Further evidence for low position of \mathbf{I} in BP : Alveolar palatalisation (some dialects of BP; absent from EC, alas).

Does this buy something else?

(1) Further evidence for low position of \mathbf{I} in BP: Alveolar palatalisation (some dialects of BP; absent from EC, alas).
(2) tia [t 'iia] 'aunt', dia [d3'ie] 'day', pode [p'गdzi] 's/he can'

Does this buy something else?

(1) Further evidence for low position of \mathbf{I} in $\mathrm{BP}:$ Alveolar palatalisation (some dialects of BP; absent from EC, alas).
(2) tia [t t 'iə] 'aunt', dia [d3'iə] 'day', pode [p'odzi] 's/he can'
(3) Triggered by $[i]$ but not by other vowels containing \mathbf{I}, i.e. $[\mathrm{e}] /[\varepsilon]$.

Alveolar palatalisation

(1) $[e] /[\varepsilon]:$ I low, shielded off by a lot of structure.

Alveolar palatalisation

(1) $[e] /[\varepsilon]$: I low, shielded off by a lot of structure.
(2) \mathbf{I} in [i] not protected by that much structure.

Alveolar palatalisation

BP

(1) $[e] /[\varepsilon]$: I low, shielded off by a lot of structure.
(2) I in [i] not protected by that much structure.
(3) I in $[e] /[\varepsilon]$ not only shielded off by more structure, but by entire head.

Other languages

(1) Bulgarian (Harris 2005) like the last stage of BP:

strong	i	e	a	∂	o	u
weak	i		∂		u	

Other languages

(1) Bulgarian (Harris 2005) like the last stage of BP:

strong	i	e	a	∂	o	u
weak	i		∂		u	

(2) Italian like the first stage of BP:

stressed	i	e	ε	a	∂	o	u
unstressed	i	e	a	o	u		

Other languages

(1) Bulgarian (Harris 2005) like the last stage of BP:

strong	i	e	a	∂	o	u
weak	i		∂		u	

(2) Italian like the first stage of BP:

stressed	i	e	ε	a	∂	o	u
unstressed	i	e	a	o	u		

(3) Russian: I low (survives reduction) but \mathbf{U} high (does not).

strong	$\dot{+}$	i	e	a	o	u
weak	$\dot{+}$		i	∂ / Λ	u	

Low position of \mathbf{I} in [e] also backed up by its failure to consistently trigger palatalisation (Timberlake 2004: 58).

Northern/Northeastern BP

(1) Nevins (2012) suggests that in Northern/Northeastern BP (N/NE-BP) reduction is towards $[\varepsilon] /[\rho]$, not $[\mathrm{e}] /[\mathrm{o}]$.

Northern/Northeastern BP

(1) Nevins (2012) suggests that in Northern/Northeastern BP (N/NE-BP) reduction is towards $[\varepsilon] /[\rho]$, not $[\mathrm{e}] /[\mathrm{o}]$.
(2) However, what N/NE-BP really seems to have is a kind of vowel harmony (Cobb 2003; Segundo 1993):
[k'عbri] 'break'
[kebr'ava] 'I used to break' [kebr'ej] 'I broke'
[k'olu] 'I glue'
[kol'ava] 'I used to glue'
[kol'ej] 'I glued'

Northern/Northeastern BP

(1) Nevins (2012) suggests that in Northern/Northeastern BP (N/NE-BP) reduction is towards $[\varepsilon] /[\rho]$, not $[\mathrm{e}] /[\mathrm{o}]$.
(2) However, what N/NE-BP really seems to have is a kind of vowel harmony (Cobb 2003; Segundo 1993):
[k'عbri] 'break'
[kebr'ava] 'I used to break' [kebr'ej] 'I broke'
[k'olu] 'I glue'
[kol'ava] 'I used to glue'
[kol'ej] 'I glued'
(3) $[\varepsilon] /[\supset]$ in unstressed position require a following $[\varepsilon] /[\supset] /[a]$.

Northern/Northeastern BP

(1) Nevins (2012) suggests that in Northern/Northeastern BP (N/NE-BP) reduction is towards $[\varepsilon] /[\rho]$, not $[\mathrm{e}] /[\mathrm{o}]$.
(2) However, what N/NE-BP really seems to have is a kind of vowel harmony (Cobb 2003; Segundo 1993):
[k'ebri] 'break' [k'Jlu] 'I glue'
[kebr'ava] 'I used to break' [kJl'ava] 'I used to glue'
[kebr'ej] 'I broke'
[kol'ej] 'I glued'
(3) $[\varepsilon] /[\rho]$ in unstressed position require a following $[\varepsilon] /[\supset] /[a]$.
(4) In N/NE-BP, vowel reduction "interage com processos de abaixamento que resultam em [ε] e [$\supset]$." (Albano 1999: 42)

More on vowel inventories

(1) $2 x$-bar structures $=$ total of 4 layers; in BP/EC only 3 .

More on vowel inventories

(1) $2 x$-bar structures $=$ total of 4 layers; in BP/EC only 3 .
(2) Danish (Basbøll 2005; Basbøll \& Wagner 1985) seems to require up to 4 layers:

line	i:	'lead'	1 layer \& I
Lene	e:	(personal name)	2 layers \& I
læne	$\varepsilon:$	'to lean'	3 layers \& I
Lane	$æ:$	(personal name)	4 layers \& I
arne	a:	'stove'	4 layers(?)

More on vowel inventories

(1) 2 x-bar structures $=$ total of 4 layers; in BP/EC only 3 .
(2) Danish (Basbøll 2005; Basbøll \& Wagner 1985) seems to require up to 4 layers:

line	$\mathrm{i}:$	'lead'	1 layer \& I
Lene	$\mathrm{e}:$	(personal name)	2 layers \& I
læne	$\mathrm{\varepsilon}:$	'to lean'	3 layers \& I
Lane	$æ:$	(personal name)	4 layers \& I
arne	a:	'stove'	4 layers(?)

(3) Basbøll \& Wagner (1985) distinguish 3 a-vowels plus [e], suggesting that even 4 empty layers might be needed.

More on vowel inventories

(1) $2 x$-bar structures $=$ total of 4 layers; in BP/EC only 3 .
(2) Danish (Basbøll 2005; Basbøll \& Wagner 1985) seems to require up to 4 layers:

line	i:	'lead'	1 layer \& \mathbf{I}
Lene	e:	(personal name)	
læne	ह:	'to lean'	
Lane	$æ:$	(personal name)	4 layers \& $\mathbf{~ I ~}$
arne	a:	'stove'	4 layers(?)

(3) Basbøll \& Wagner (1985) distinguish 3 a-vowels plus [e], suggesting that even 4 empty layers might be needed.
(4) Only one x-bar structure allowed: 2 layers, i.e. classic 5 -vowel system.

Lenition in consonants

(1) A in consonants not only [-high], but also as well as [coronal] (Broadbent 1991; Cyran 1997).

Lenition in consonants

(1) A in consonants not only [-high], but also as well as [coronal] (Broadbent 1991; Cyran 1997).
(2) (I am aware of different proposals, e.g. Backley (2011), but remain unconvinced by them, cf. Pöchtrager (2010, 2013b,a).)

Lenition in consonants

(1) A in consonants not only [-high], but also as well as [coronal] (Broadbent 1991; Cyran 1997).
(2) (I am aware of different proposals, e.g. Backley (2011), but remain unconvinced by them, cf. Pöchtrager (2010, 2013b,a).)
(3) Coronals bigger in size than non-coronals.

Lenition in consonants

(1) \mathbf{A} in consonants not only [-high], but also as well as [coronal] (Broadbent 1991; Cyran 1997).
(2) (I am aware of different proposals, e.g. Backley (2011), but remain unconvinced by them, cf. Pöchtrager (2010, 2013b,a).)
(3) Coronals bigger in size than non-coronals.
(4) English/Austrian German tapping targets coronal stops, which are the biggest structures in the system.

Lenition in consonants

(1) \mathbf{A} in consonants not only [-high], but also as well as [coronal] (Broadbent 1991; Cyran 1997).
(2) (I am aware of different proposals, e.g. Backley (2011), but remain unconvinced by them, cf. Pöchtrager (2010, 2013b,a).)
(3) Coronals bigger in size than non-coronals.
(4) English/Austrian German tapping targets coronal stops, which are the biggest structures in the system.
(6) hit \sim hi[r]ing, stop \sim stopping.

Lenition in consonants

(1) \mathbf{A} in consonants not only [-high], but also as well as [coronal] (Broadbent 1991; Cyran 1997).
(2) (I am aware of different proposals, e.g. Backley (2011), but remain unconvinced by them, cf. Pöchtrager (2010, 2013b,a).)
(3) Coronals bigger in size than non-coronals.
(4) English/Austrian German tapping targets coronal stops, which are the biggest structures in the system.
(5) hit \sim hi $[r]$ ing, stop \sim stopping.
© For details cf. Pöchtrager (2016).

Lenition in consonants

(1) \mathbf{A} in consonants not only [-high], but also as well as [coronal] (Broadbent 1991; Cyran 1997).
(2) (I am aware of different proposals, e.g. Backley (2011), but remain unconvinced by them, cf. Pöchtrager (2010, 2013b,a).)
(3) Coronals bigger in size than non-coronals.
(4) English/Austrian German tapping targets coronal stops, which are the biggest structures in the system.
(5) hit \sim hi[r]ing, stop \sim stopping.
© For details cf. Pöchtrager (2016).
(1) Introduction
(2) Vowel Reduction
(3) English tense/lax
(4) Québec French
(5) The meaning of the heads
(6) Conclusion

Two sets of stressed vowel

(11) English stressed vowels divided into 2 sets: T-type ("free"), L-type ("checked").

- RP (Wells 1982: 119)

- "General American" (Wells 1982: 120)

| I | U | i | | | u | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ε | Λ | ei | or | | o | 3 | 0 |
| $æ$ | | | aI | au | | a | |
| checked | free | | | | | | |

Two sets of stressed vowel

(1) English stressed vowels divided into 2 sets: T-type ("free"), L-type ("checked").

- RP (Wells 1982: 119)

I	0	i:				u:	Іə		บว
e		eI		91	$\partial \circlearrowright$		عว	$3:$	ง:
æ	D		aI		au			a:	

- "General American" (Wells 1982: 120)

| I | U | i | | | u | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ε | Λ | ei | or | | o | 3 | 0 |
| $æ$ | | | aI | au | | a | |
| checked | free | | | | | | |

(2) Characterisation varies:
free/checked (behaviour, quality) tense/lax (quality) long/short; mono-/bimoraic (quantity) $\{$
all problematic
(Bauer 1980; Durand 2005)

What's special about the L-type?

(1) possible __CC: ['וmp], *['imp]

What's special about the L-type?

(1) possible __CC: ['וmp], *['imp]
(2) disallowed finally: *[bi], *[zu], but [bi:], [zu:]

What's special about the L-type?

(1) possible __CC: ['וmp], *['imp]
(2) disallowed finally: *[bi], *[zu], but [bii], [zu:]
(3) Disallowed pre-hiatus: */[i]o, * $\operatorname{rod}[\varepsilon] o$, but $![i:] o$, $\operatorname{rod}[e \mid] o$ etc.

What's special about the L-type?

(1) possible __CC: ['וmp], *['imp]
(2) disallowed finally: *[bi], *[zu], but [bi:], [zu:]
(3) Disallowed pre-hiatus: */[1]o, * rod[$[\varepsilon]$ o, but $/[i:] o$, $\operatorname{rod}[e \mid] o$ etc.
(4) (More on th[iza]tre $\sim t h[ə]$ tre later)

Explanations? (1)

(1) L-type (bit) checked by a following consonant, which checks "the pulse of air for the syllable and its vowel" (Wells 1982: 119), unlike T-type (beat).

Explanations? (1)

(1) L-type (bit) checked by a following consonant, which checks "the pulse of air for the syllable and its vowel" (Wells 1982: 119), unlike T-type (beat).
(2) Explains distribution but not

- why there is checking,
- whether there is also checking in lengthened vowels, e. g. bid.

Explanations? (1)

(1) L-type (bit) checked by a following consonant, which checks "the pulse of air for the syllable and its vowel" (Wells 1982: 119), unlike T-type (beat).
(2) Explains distribution but not

- why there is checking,
- whether there is also checking in lengthened vowels, e.g. bid.
(3) GP (Kaye 2000):
- tense $=($ melodically $)$ headed, e.g. (\{\}!)
- lax $=$ unheaded, e.g. $\left(\{\mathbf{I}\}_{_}\right)$

Explanations? (1)

(1) L-type (bit) checked by a following consonant, which checks "the pulse of air for the syllable and its vowel" (Wells 1982: 119), unlike T-type (beat).
(2) Explains distribution but not

- why there is checking,
- whether there is also checking in lengthened vowels, e. g. bid.
(3) GP (Kaye 2000):
- tense $=$ (melodically) headed, e.g. (\{\} $\mathbf{I})$
- lax = unheaded, e.g. (\{I\}_)
(4) Plus: requirement that branching nuclei link to headed expressions (for reasons of government).

Explanations? (1)

(1) L-type (bit) checked by a following consonant, which checks "the pulse of air for the syllable and its vowel" (Wells 1982: 119), unlike T-type (beat).
(2) Explains distribution but not

- why there is checking,
- whether there is also checking in lengthened vowels, e.g. bid.
(3) GP (Kaye 2000):
- tense $=$ (melodically) headed, e.g. (\{\} $\mathbf{I})$
- lax = unheaded, e.g. (\{I\}_)
(4) Plus: requirement that branching nuclei link to headed expressions (for reasons of government).
(5) Derives $\overline{\mathrm{V}} \rightarrow$ tense, but fails to explain distribution (e.g. why *[bı]).

Explanations? (2)

(1) Moraic account (Hammond 1999):

- lax $=1 \mu$
- tense $=2 \mu$

Explanations? (2)

(1) Moraic account (Hammond 1999):

- lax $=1 \mu$
- tense $=2 \mu$
(2) Syllables must contain exactly two moras: *[וı] too short (1μ), [lıp] fine (2μ)

Explanations? (2)

(1) Moraic account (Hammond 1999):

- lax $=1 \mu$
- tense $=2 \mu$
(2) Syllables must contain exactly two moras: $*[1]$ too short (1μ), [lıp] fine (2μ)
(3) Final C in [lıp] moraic, but not in [lımp].

Explanations? (2)

(1) Moraic account (Hammond 1999):

- lax $=1 \mu$
- tense $=2 \mu$
(2) Syllables must contain exactly two moras: *[lı] too short (1μ), [lıp] fine (2μ)
(3) Final C in [lıp] moraic, but not in [lımp].
(4) Worse still: [fiind], [peint] etc. where neither consonant contributes weight.

Explanations? (2)

(11) Moraic account (Hammond 1999):

- lax $=1 \mu$
- tense $=2 \mu$
(2) Syllables must contain exactly two moras: *[lı] too short (1μ), [lıp] fine (2μ)
(3) Final C in [lıp] moraic, but not in [lımp].
(4) Worse still: [fiind], [peint] etc. where neither consonant contributes weight.
(5) Ambisyllabicity to allow words like bitter, bigot, busy etc.

What am I trying to do?

(1) Structural account proposed here tries to link

- Behaviour
- Length
- (To some extent) quality
(2) Key claim: T-type and L-type are the same and they are not the same.

T-type $=$ L-type

(1) Same basic structure: head xn and a complement x .

T-type $=$ L-type

(1) Same basic structure: head xn and a complement x .

T-type $=$ L-type

(1) Same basic structure: head xn and a complement x .

(2) Basic scaffold for both [bit] and [bi:t].

T-type $=$ L-type

(1) Same basic structure: head xn and a complement x .

(2) Basic scaffold for both [bit] and [bi:t].

3 Final t in specifier, cf. Pöchtrager (2006) for details.

T-type $=$ L-type

(1) Same basic structure: head xn and a complement x .

(2) Basic scaffold for both [bit] and [bi:t].

3 Final t in specifier, cf. Pöchtrager (2006) for details.
(4) Difference in who makes use of the complement (blue).

T-type \neq L-type

(1) T-type: head claims complement (m-command, (Pöchtrager 2006)).

T-type \neq L-type

(1) T-type: head claims complement (m-command, (Pöchtrager 2006)).
(2) L-type: Complement not claimed by head, but p-licensed and silenced (Kaye 1990b; Charette 1991; Pöchtrager 2006) by following consonant.

T-type \neq L-type

(1) T-type: head claims complement (m-command, (Pöchtrager 2006)).
(2) L-type: Complement not claimed by head, but p-licensed and silenced (Kaye 1990b; Charette 1991; Pöchtrager 2006) by following consonant.
(3) T-type [i:]

L-type [i]

T-type \neq L-type

(1) T-type: head claims complement (m-command, (Pöchtrager 2006)).
(2) L-type: Complement not claimed by head, but p-licensed and silenced (Kaye 1990b; Charette 1991; Pöchtrager 2006) by following consonant.
(3) T-type [i:]

L-type [i]

(4) Similar proposal by Polgárdi (2012), though not as part of a general theory of vowels.

Consequences (1)

(1) Similar to 'checking'.

- But requirement on following C no longer extra stipulation
- Instead follows from having an unused complement.

Consequences (1)

(1) Similar to 'checking'.

- But requirement on following C no longer extra stipulation
- Instead follows from having an unused complement.
(2) Distribution follows: *[bi], */[i]o since no C following to p-license complement.

Consequences (1)

(1) Similar to 'checking'.

- But requirement on following C no longer extra stipulation
- Instead follows from having an unused complement.
(2) Distribution follows: *[bl], */[i]o since no C following to p-license complement.
(3) Greater duration of T-type vs. L-type (ratios of 3:2) follows: T-type $=$ head $\&$ complement, but L-type $=$ head only.

Consequences (2)

(1) T-type takes up more space than L-type.

Consequences (2)

(1) T-type takes up more space than L-type.
(2) If some of that space is taken up by coda (in the sense of GP, cf. Kaye (1990a)), only L-type possible: ['imp], *['i:mp].

Consequences (2)

(1) T-type takes up more space than L-type.
(2) If some of that space is taken up by coda (in the sense of GP, cf. Kaye (1990a)), only L-type possible: ['וmp], *['i:mp].

3

Consequences (2)

(1) T-type takes up more space than L-type.
(2) If some of that space is taken up by coda (in the sense of GP, cf. Kaye (1990a)), only L-type possible: ['imp], *['i:mp].
(3)

(4) Alveolar clusters can exceed that limit, e.g. fiend.

Consequences (2)

(1) T-type takes up more space than L-type.
(2) If some of that space is taken up by coda (in the sense of GP, cf. Kaye (1990a)), only L-type possible: ['imp], *['i:mp].
(3)

(4) Alveolar clusters can exceed that limit, e.g. fiend.
(5) Pöchtrager (2010): Alveolars have extra room that can be borrowed.

T-type/L-type and height

(1) [I]/[i]

[e]/[e]

[æ]/[ä]

T-type/L-type and height

(1) [1]/[i]

[ε //e]
[æ]/[ä]

(2) System used so far gives us exactly the possibilities we need and allows for T/L-distinction to be integrated.

T-type/L-type and height

(1) [1]/[i]

[ε //e]

[æ]/[ä]

(2) System used so far gives us exactly the possibilities we need and allows for T/L-distinction to be integrated.
(3) $[æ] /[a ̈]$ additional unused point whose fate is unclear. (Reason for scarcity of T-type counterpart to [æ]?)

Hiatus with schwa

(1) $L[\mathrm{i}]$ o not ${ }^{*}[[1]$ o because there is no C following to license L-type.

Hiatus with schwa

(11) $L[i:]$ o not */[$[1] o$ because there is no C following to license L-type.
(2) Cannot be complete story.

Hiatus with schwa

(11) $L[i:]$ o not */[$[1]$ o because there is no C following to license L-type.
(2) Cannot be complete story.
(3) Before schwa we do find L-type:

- th[$[ə]$ tre \& th $[i z]$ tre
- Bisyllabic id[əə] instead of older trisyllabic id[i:ə] (Wells 1982: 215) etc.

Hiatus with schwa

(1) $L[i:]$ o not ${ }^{*} /[1] o$ because there is no C following to license L-type.
(2) Cannot be complete story.
(3) Before schwa we do find L-type:

- th[iə]tre \& th[i: $[\exists]$ tre
- Bisyllabic id[əə] instead of older trisyllabic $i d[$ [i:2] (Wells 1982: 215) etc.
(4) Same issue before r, even in non-rhotic varieties: [fiə].

Hiatus with schwa

(1) $L[i:]$ o not ${ }^{*} /[1] o$ because there is no C following to license L-type.
(2) Cannot be complete story.
(3) Before schwa we do find L-type:

- th[$[ə]$ tre \& th $[i z]$ tre
- Bisyllabic id[əə] instead of older trisyllabic $i d[$ [i:2] (Wells 1982: 215) etc.
(4) Same issue before r, even in non-rhotic varieties: [fiə].
(3) Phonological identity of idea, fear: intrusive r.

Centring diphthongs

(1) High vowel

[汭]

[e:]

Centring diphthongs

(1) High vowel

[1ə]

[e:]

(2) [1] basically a high vowel with schwa embedded.

Centring diphthongs

(1) High vowel

[1ə]

[e:]

(2) [1] basically a high vowel with schwa embedded.
(3) Similar to [e:], difference position of \mathbf{I}.

Centring diphthongs

(1) High vowel

[ə]

[e: $]$

(2) [$1 \Xi]$ basically a high vowel with schwa embedded.
(3) Similar to [e:], difference position of \mathbf{I}.
(4) In $[\ni]$, $x n$ does not m-command anything; $\times N$ and its complement get spelled out by Empty Category Principle (Charette 1991; Kaye 1995) as schwa (=2 positions).
(1) Introduction
(2) Vowel Reduction
(3) English tense/lax
(4) Québec French
(5) The meaning of the heads
(6) Conclusion

Québec French

(1) Fairly complex distribution of T-type/L-type (Bosworth 2017; Charette 1994, to appear; Ploch 1995; Poliquin 2006; Walker 1984).

Québec French

(1) Fairly complex distribution of T-type/L-type (Bosworth 2017; Charette 1994, to appear; Ploch 1995; Poliquin 2006; Walker 1984).
(2) Several sub-problems: Vowel laxing, pretonic laxing, laxing harmony, initial syllable laxing etc. (Walker 1984).

Québec French

(1) Fairly complex distribution of T-type/L-type (Bosworth 2017; Charette 1994, to appear; Ploch 1995; Poliquin 2006; Walker 1984).
(2) Several sub-problems: Vowel laxing, pretonic laxing, laxing harmony, initial syllable laxing etc. (Walker 1984).
3 Disagreement on the phonological interpretation of facts.

Québec French

(1) Fairly complex distribution of T-type/L-type (Bosworth 2017; Charette 1994, to appear; Ploch 1995; Poliquin 2006; Walker 1984).
(2) Several sub-problems: Vowel laxing, pretonic laxing, laxing harmony, initial syllable laxing etc. (Walker 1984).
(3) Disagreement on the phonological interpretation of facts.
(4) Focus on final position, facts most straightforward.

Québec French: Disagreement
(1) Laxing before final consonant:

vite	$[\mathrm{vit}]$	'fast'	sotte	$[\mathrm{sot}]$	'idiot'
-	$*[\mathrm{vit}]$		saute	$[\mathrm{so}(\mathrm{s}) \mathrm{t}]$	'jump!'

Québec French: Disagreement

(1) Laxing before final consonant:

vite	[vit]	fast'	sotte	[sot]	t'
-	*[vit]		saute	[so(:)t]	ump!

(2) Walker (1984) ignores length difference in non-high vowels ("longues par nature") and therefore limits laxing to high vowels.

Québec French: Disagreement

(1) Laxing before final consonant:

vite	[vit]	fast'	sotte	[sot]	t'
-	*[vit]		saute	[so(:)t]	ump!

(2) Walker (1984) ignores length difference in non-high vowels ("longues par nature") and therefore limits laxing to high vowels.
(3) Charette (to appear) takes length as phonologically relevant; laxing restricted to short vowels. High vowels have no long counterpart.

Québec French: Disagreement

(1) Laxing before final consonant:

vite	[vit]	fast'	sotte	[sot]	t'
-	*[vit]		saute	[so(:)t]	ump!

(2) Walker (1984) ignores length difference in non-high vowels ("longues par nature") and therefore limits laxing to high vowels.
(3) Charette (to appear) takes length as phonologically relevant; laxing restricted to short vowels. High vowels have no long counterpart.
(4) Both insights part of present approach:

- high vowels different
- length taken into acount

Québec French: High vowels

[i] vite

*[i]

(1) Nuclear head loses out against following C in the race for its sister.

Québec French: High vowels

(1) Nuclear head loses out against following C in the race for its sister.
(2) Note: Nuclear head not generally banned from m-commanding complement; [i] does exist in QF in other contexts.

Québec French: Non-high vowels

(1) Why "nuclear head loses out in the race for its sister"?

Québec French: Non-high vowels

(1) Why "nuclear head loses out in the race for its sister"?
(2) Because of non-high vowels.

Québec French: Non-high vowels

Québec French: Non-high vowels

(1) Why "nuclear head loses out in the race for its sister"?
(2) Because of non-high vowels.
(3) Crucially, target not the sister.
(4) Making non-high vowels bigger than high vowels gives us exactly the difference we need for QF.
(1) Introduction
(2) Vowel Reduction
(3) English tense/lax
(4) Québec French
(5) The meaning of the heads
(6) Conclusion

What do individual bits of the tree represent?

(1) BP

[i]
[e]
$[\varepsilon]$

[ə]
[e]
[$]$
(2) EC: Higher projection (blue) only possible in stressed position.

What do individual bits of the tree represent?

(1) BP

EC

[ə]
[e]
[$]$
(2) EC: Higher projection (blue) only possible in stressed position.
(3) Higher projection $=$ formal representation of stress?

Similar idea in CVCV (Larsen 1995; Enguehard 2016).

What do individual bits of the tree represent?

(1) BP

EC

[ョ]
[e]
[$]$
(2) EC: Higher projection (blue) only possible in stressed position.
(3) Higher projection $=$ formal representation of stress?

Similar idea in CVCV (Larsen 1995; Enguehard 2016).
(4) But BP: [e] also in prestress position (unstressed, preceding stress).

Making EC and BP more different

(1) Is there an alternative more consistent with stress?

Making EC and BP more different

(1) Is there an alternative more consistent with stress?
(2) BP

EC

[i]
[e]
[$]$
[ə]
[e]
[ε

Making EC and BP more different

(1) Is there an alternative more consistent with stress?
(2) BP

EC

[i]
[e]
[ε
[ə]
[e]
[$\varepsilon]$
(3) Still structurally different; but higher head unique encoding of stress.

Making EC and BP more different

(1) Is there an alternative more consistent with stress?
(2) BP

EC

[i]
[e]
[ε
[ə]
[e]
[$\varepsilon]$
(3) Still structurally different; but higher head unique encoding of stress.
(4) But: BP [i] also in stressed position.

Making EC and BP more different

(1) Is there an alternative more consistent with stress?
(2) BP

EC

[i]
[e]
[ε
[ə]
[e]
[ε
(3) Still structurally different; but higher head unique encoding of stress.
(4) But: $\mathrm{BP}[\mathrm{i}]$ also in stressed position.
(5) Plus potential complication with culminativity (Hayes 1995).

English unstressed (final) position

(1) English: Schwa (sofa), and high \& close-mid vowels: happy, into, potato....

English unstressed (final) position

(1) English: Schwa (sofa), and high \& close-mid vowels: happy, into, potato....
(2) Final vowel in happy transcribed as [1] by (Wells 1982: 165), though identification of unstressed with stressed vowels is "usually [...] debatable".

English unstressed (final) position

(1) English: Schwa (sofa), and high \& close-mid vowels: happy, into, potato....
(2) Final vowel in happy transcribed as [1] by (Wells 1982: 165), though identification of unstressed with stressed vowels is "usually [...] debatable".
(3) Tempting: T-/L-distinction requires sister to head. If unstressed meant that there was no sister, T-/L-distinction would become inexpressible.

English unstressed (final) position

(1) English: Schwa (sofa), and high \& close-mid vowels: happy, into, potato....
(2) Final vowel in happy transcribed as [1] by (Wells 1982: 165), though identification of unstressed with stressed vowels is "usually [...] debatable".
(3) Tempting: T-/L-distinction requires sister to head. If unstressed meant that there was no sister, T-/L-distinction would become inexpressible.
(4) But then, where is there room for non-high vowels? Sofa, potato etc.?

English unstressed (final) position

(11) English: Schwa (sofa), and high \& close-mid vowels: happy, into, potato....
(2) Final vowel in happy transcribed as [1] by (Wells 1982: 165), though identification of unstressed with stressed vowels is "usually [...] debatable".
(3) Tempting: T-/L-distinction requires sister to head. If unstressed meant that there was no sister, T-/L-distinction would become inexpressible.
(4) But then, where is there room for non-high vowels? Sofa, potato etc.?
(5) Formal expression of stress still an issue.

Is there even more?

(1) Danish: Need 4 layers (2×2) for quality.

Is there even more?

(1) Danish: Need 4 layers (2×2) for quality.
(2) But says nothing about quantity which requires another x-bar structure (Pöchtrager 2006).

Is there even more?

(1) Danish: Need 4 layers (2×2) for quality.
(2) But says nothing about quantity which requires another x-bar structure (Pöchtrager 2006).
(3) Are there three x-bar structures in total? If yes, what are they?
(1) Introduction
(2) Vowel Reduction
(3) English tense/lax
(4) Québec French
(5) The meaning of the heads

(6) Conclusion

Summary \& conclusion

(1) "Openness": not A (melody), but empty structure.

Summary \& conclusion

(1) "Openness": not A (melody), but empty structure.
(2) Certain parallels to

- Particle Phonology (Schane 1984): multiple occurrence of particle a
- Clements (1991): [open] could be split to allow for several degrees

Summary \& conclusion

(1) "Openness": not A (melody), but empty structure.
(2) Certain parallels to

- Particle Phonology (Schane 1984): multiple occurrence of particle a
- Clements (1991): [open] could be split to allow for several degrees
(3) Current approach has broader coverage, though:
- vowel reduction (quality, quantity)
- consonantal lenition
- tense/lax
- transparency (Pöchtrager 2017)

Summary \& conclusion

(1) "Openness": not A (melody), but empty structure.
(2) Certain parallels to

- Particle Phonology (Schane 1984): multiple occurrence of particle a
- Clements (1991): [open] could be split to allow for several degrees
(3) Current approach has broader coverage, though:
- vowel reduction (quality, quantity)
- consonantal lenition
- tense/lax
- transparency (Pöchtrager 2017)
(4) If number and kind of x-bar structures can be satisfactorily motivated, system limited in principle (unlike other approaches).

Summary \& conclusion

(1) "Openness": not A (melody), but empty structure.
(2) Certain parallels to

- Particle Phonology (Schane 1984): multiple occurrence of particle a
- Clements (1991): [open] could be split to allow for several degrees
(3) Current approach has broader coverage, though:
- vowel reduction (quality, quantity)
- consonantal lenition
- tense/lax
- transparency (Pöchtrager 2017)
(4) If number and kind of x-bar structures can be satisfactorily motivated, system limited in principle (unlike other approaches).
(5) Identity of structures (stress? nucleus proper?) still awaits clarification.

Summary \& conclusion

(1) "Openness": not A (melody), but empty structure.
(2) Certain parallels to

- Particle Phonology (Schane 1984): multiple occurrence of particle a
- Clements (1991): [open] could be split to allow for several degrees
(3) Current approach has broader coverage, though:
- vowel reduction (quality, quantity)
- consonantal lenition
- tense/lax
- transparency (Pöchtrager 2017)
(4) If number and kind of x-bar structures can be satisfactorily motivated, system limited in principle (unlike other approaches).
(6) Identity of structures (stress? nucleus proper?) still awaits clarification.
(6) Hopefully one step closer to a general theory of vowels.

Thank you!
 Köszönöm szépen!

References

Albano, Eleonora Cavalcante (1999): O Português Brasileiro e as Controvérsias da Fonética Atual: Pelo Aperfeiçoamento da Fonologia Articulatória. DELTA: Documentação de Estudos em Lingüística Teórica e Aplicada, 15, 23-50.
Anderson, John \& Ewen, Colin J. (1987): Principles Of Dependency Phonology. Cambridge et al.: Cambridge University Press.
Backley, Phillip (2011): An Introduction to Element Theory. Edinburgh: Edinburgh University Press.
Basbøll, Hans (2005): The Phonology of Danish. Oxford: Oxford University Press.
Basbøll, Hans \& Wagner, Johannes (1985): Kontrastive Phonologie des Deutschen und Dänischen. Segmentale Wortphonologie und -phonetik. Tübingen: Max Niemeyer Verlag.
Bauer, Laurie (1980): The Feature "tense/lax" with Special Reference to the Vowel System of (American) English. Zeitschrift für Anglistik und Amerikanistik, 28, 3, 244-253.
Bosworth, Yulia (2017): High vowel distribution and trochaic markedness in Québécois. The Linguistic Review, 34, 1, 39-82.
Broadbent, Judith M. (1991): Linking and Intrusive r in English. UCL Working Papers in Linguistics, 3, 281-301.
Carr, Philip, Durand, Jacques \& Ewen, Colin J. (eds.) (2005): Headhood, elements, specification and contrastivity. Phonological Papers in Honour of John Anderson. Amsterdam: Benjamins.
Charette, Monik (1991): Conditions on phonological government. Cambridge et al.: Cambridge University Press.
Charette, Monik (1994): Head-alignment. Unpublished paper presented at glow, Vienna, April 1994.
Charette, Monik (to appear): Headedness, $|\mathrm{A}|$ \& head-alignment: capturing the properties of the vowels of Montreal French. Glossa.
Charette, Monik \& Göкsel, Asli (1994): Vowel Harmony and Switching in Turkic languages. SOAS Working Papers in Linguistics \& Phonetics, 4 , 29-56.

Charette, Monik \& Göksel, Asli (1996): Licensing constraints and vowel harmony in Turkic languages. SOAS Working Papers in Linguistics \& Phonetics, 6, 1-25.

Charette, Monik \& Pöchtrager, Markus A. (in preparation): Québec French vowels.
Clements, George N. (1991): Vowel Height Assimilation in Bantu Languages. Working Papers of the Cornell Phonetics Laboratory, 5, 37-76.
Cobb, Margaret (1995): Vowel Harmony in Zulu and Basque: The Interaction of Licensing Constraints, H-Licensing and Constituent Structure. SOAS Working Papers in Linguistics \& Phonetics, 5, 23-39.

Cobb, Margaret (1997): Conditions on Nuclear Expressions in Phonology. Ph.D. thesis, School of Oriental and African Studies, Department of Linguistics, University of London.

Cobb, Margaret (2003): Government Phonology and the vowel harmonies of Natal Portuguese and Yoruba. In: Stefan Ploch (ed.) Living on the Edge. 28 Papers in Honour of Jonathan Kaye, Berlin \& New York: Mouton de Gruyter. 223-242.

References II

Cristófaro Alves da Silva, Thaïs (1992): Nuclear Phenomena in Brazilian Portuguese. Ph.D. thesis, School of Oriental and African Studies, University of London.
Cyran, Eugeniusz (1997): Resonance Elements in Phonology. A Study in Munster Irish. Lublin: Wydawnictwo Folium.
den Dikken, Marcel \& van der Hulst, Harry (2018): On Some Deep Structural Analogies between Syntax and Phonology. In: Kuniya Nasukawa (ed.) Recursion in Phonology, Berlin, New York: Mouton de Gruyter.
Durand, Jacques (2005): Tense/Lax, the Vowel System of English and Phonological Theory. In: Carr et al. (2005), 77-98.
Durand, Jacques \& Katamba, Francis (eds.) (1995): Frontiers of Phonology: Atoms, Structures, Derivations. London, New York: Longman.
Enguehard, Guillaume (2016): Vers une représentation exclusivement squelettale de l'accent: argumentation à partir de données du same du sud, du live, du norrois et du russe. Ph.D. thesis, Université Paris 7.
Hammond, Michael (1999): The Phonology of English. A Prosodic Optimality-Theoretic Approach. Oxford: Oxford University Press.
Harris, John (1990): Segmental complexity and phonological government. Phonology, 7, 2, 255-301.
Harris, John (1994): English Sound Structure. Oxford et al.: Blackwell.
Harris, John (1997): Licensing Inheritance: an integrated theory of neutralisation. Phonology, 14, 315-370.
Harris, John (2005): Vowel reduction as information loss. In: Carr et al. (2005), 119-132.
Harris, John \& Lindsey, Geoff (1995): The elements of phonological representation. In: Durand \& Katamba (1995), 34-79.
Harris, John \& Lindsey, Geoff (2000): Vowel patterns in mind and sound. In: Noel Burton-Roberts, Philip Carr \& Gerry Docherty (eds.) Phonological knowledge: conceptual and empirical issues, Oxford: Oxford University Press. 185-205.

Hayes, Bruce (1995): Metrical Stress Theory. Principles and Case Studies. Chicago and London: The University of Chicago Press.
Jassem, Wiktor (2003): Polish. Journal of the International Phonetic Association, 33, 1, 103-107.
Kaye, Jonathan (1990a): 'Coda' Licensing. Phonology, 7, 2, 301-330.
Kaye, Jonathan (1990b): Government in Phonology. The Case of Moroccan Arabic. The Linguistic Review, 6, 131-159.
Kaye, Jonathan (1995): Derivations and interfaces. In: Durand \& Katamba (1995), 289-332.
Kaye, Jonathan (2000): A User's Guide to Government Phonology (GP). Ms.
Kaye, Jonathan (2001): Working with licensing constraints. In: Katarzyna Dziubalska-Kołaczyk (ed.) Constraints and Preferences, Berlin, New York: Mouton de Gruyter. 251-268.

Kaye, Jonathan, Lowenstamm, Jean \& Vergnaud, Jean-Roger (1985): The internal structure of phonological elements: a theory of charm and government. Phonology Yearbook, 2, 303-328.

References III

Kaye, Jonathan, Lowenstamm, Jean \& Vergnaud, Jean-Roger (1990): Constituent structure and government in phonology. Phonology, 7, 2, 193-231.
Kaye, Jonathan \& Pöchtrager, Markus A. (2009): GP 2.0. Paper presented at the "Government Phonology Round Table", April 25, 2009, Piliscsaba/Hungary.
Kaye, Jonathan \& Pöchtrager, Markus A. (2013): GP 2.0. SOAS Working Papers in Linguistics \& Phonetics, 16, 51-64.
Ladefoged, Peter \& Johnson, Keith (2010): A Course In Phonetics. Boston: Wadsworth, $6^{\text {th }}$ edn..
Larsen, Uffe Bergeton (1995): Vowel length, Raddoppiamento Sintattico and the selection of the definite article in Modern Italian. In: Léa Nash, Georges Tsoulas \& Anne Zribi-Hertz (eds.) Actes du deuxième colloque Langues et Grammaire. Paris: Université Paris 8, 110-124.
Lehiste, Ilse (1965): The function of quantity in Finnish and Estonian. Language, 41, 3, 447-456.
Mateus, Maria Helena \& d'Andrade, Ernesto (2000): The Phonology of Portuguese. Oxford: Oxford University Press.
Nevins, Andrew (2012): Vowel lenition and fortition in Brazilian Portuguese. Letras de Hoje, 47, 3, 228-233.
Ploch, Stefan (1995): French Nasal Vowels - A First Approach. SOAS Working Papers in Linguistics \& Phonetics, 5, 91-106.
Pöchtrager, Markus A. (2006): The Structure of Length. Ph.D. thesis, University of Vienna.
Pöchtrager, Markus A. (2010): The Structure of A. Paper presented at the " $33^{\text {rd }}$ GLOW Colloquium", 13-16 April 2010, Wrocław, Poland.
Pöchtrager, Markus A. (2012): Deconstructing A. Paper presented at the "MFM Fringe Meeting on Segmental Architecture", 23 May 2012, University of Manchester, Great Britain.

Pöchtrager, Markus A. (2013a): Alveolars, size and lenition. Paper presented at the "21st Manchester Phonology Meeting", 23-25 May 2012, University of Manchester, Great Britain.

Pöchtrager, Markus A. (2013b): On A. Paper presented at the "A Workshop on Melodic Representation", 12 March 2013, London, UCL.
Pöchtrager, Markus A. (2016): It's all about size. In: Péter Szigetvári (ed.) 70 snippets to mark Ádám Nádasdy's 70th birthday, http://seas3.elte.hu/nadasdy70/pochtrager.html.
Pöchtrager, Markus A. (2017): Transparent vowels: Small cogs in large machines. Paper presented at the " 25 th Manchester Phonology Meeting", 25-27 May 2017, University of Manchester, Great Britain.
Pöchtrager, Markus A. (2018): Sawing off the branch you are sitting on. Acta Linguistica Academica, 65, 1, 47-68.
Polgárdi, Krisztina (2012): The distribution of vowels in English and trochaic proper government. In: Bert Botma \& Roland Noske (eds.) Phonological Explorations: Empirical, Theoretical and Diachronic Issues, Berlin: de Gruyter. 111-134.

Poliquin, Gabriel Christophe (2006): Canadian French Vowel Harmony. Ph.D. thesis, Harvard University.

References IV

Pulleyblank, Douglas (2011): Vowel Height. In: Marc van Oostendorp, Colin J. Ewen, Elizabeth Hume \& Keren Rice (eds.) The Blackwell Companion to Phonology, Hoboken, NJ: Wiley/Blackwell, vol. 1. 491-518.

Raun, Alo \& Saareste, Andrus (1965): Introduction to Estonian Linguistics. Wiesbaden: Otto Harrassowitz.
Schane, Sanford A. (1984): The fundamentals of particle phonology. Phonology Yearbook, 1, 129-155.
Segundo, Silvia de Oliveira (1993): Stress and related phenomena in Brazilian (Natal) Portuguese. Ph.D. thesis, School of Oriental and African Studies, Department of Linguistics, University of London.

Timberlake, Alan (2004): A Reference Grammar of Russian. Cambridge: Cambridge University Press.
Walker, Douglas C. (1984): The Pronunciation of Canadian French. Ottawa: University of Ottawa Press.
Wells, John C. (1982): Accents of English 1. An Introduction. Cambridge, London, New York, New Rochelle, Melbourne, Sydney: Cambridge University Press.

Wetzels, W. Leo (1995): Mid-vowel alternations in the Brazilian Portuguese verb. Phonology, 12, 2, 281-304.
Wheeler, Max W. (2005): The Phonology of Catalan. Oxford, New York: Oxford University Press.

